Parallel collision detection of ellipsoids with applications in large scale multibody dynamics

نویسندگان

  • Arman Pazouki
  • Hammad Mazhar
  • Dan Negrut
چکیده

This contribution describes a parallel approach for determining the collision state of a large collection of ellipsoids. Collision detection is required in granular dynamics simulation where it can combine with a differential variational inequality solver or discrete element method to approximate the time evolution of a collection of rigid bodies interacting through frictional contact. The approach proposed is structured on three levels. At the lowest level, the collision information associated with two colliding ellipsoids is obtained as the solution of a two-variable unconstrained optimization problem for which first and second order sensitivity information is derived analytically. Although this optimization approach suffices to resolve the collision problem between any two arbitrary ellipsoids, a less versatile but more efficient approach precedes it to gauge whether two ellipsoids are actually in contact and require the more costly optimization approach. This intermediate level draws on the analytical solution of a 3 rd order polynomial obtained from the characteristic equation of two arbitrary ellipsoids. Finally, this intermediate level is invoked by the outer level only when a 3D spatial binning algorithm indicates that two ellipsoids share the same bin (box) and therefore could potentially collide. This multilevel approach is implemented in parallel and when executed on a ubiquitous Graphics Processing Unit (GPU) card scales linearly and yields a two orders of magnitude speedup over a similar algorithm executed on the Central Processing Unit (CPU). The GPU-based ellipsoid contact detection algorithm yields a 14 fold speedup over a CPU-based sphere contact detection algorithm implemented in the third party open source Bullet Physics Library (BPL). The proposed methodology provides the efficiency demanded by granular dynamics applications, which routinely handle scenarios with millions of collision events.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPU-based Parallel Computing for the Simulation of Complex Multibody Systems with Unilateral and Bilateral Constraints: An Overview

This work reports on advances in large-scale multibody dynamics simulation facilitated by the use of the Graphics Processing Unit (GPU). A description of the GPU execution model along with its memory spaces is provided to illustrate its potential parallel scientific computing. The equations of motion associated with the dynamics of large system of rigid bodies are introduced and a solution meth...

متن کامل

A real-time recursive dynamic model for vehicle driving simulators

This paper presents the Real-Time Recursive Dynamics (RTRD) model that is developed for driving simulators. The model could be implemented in the Driving Simulator. The RTRD can also be used for off-line high-speed dynamics analysis, compared with commercial multibody dynamics codes, to speed up mechanical design process. An overview of RTRD is presented in the paper. Basic models for specific ...

متن کامل

Multibody Dynamics Model of a Human Hand for Haptics Interaction

In this paper we propose a strategy for modelling a human hand for Haptics interaction.The strategy consists in a parallel computing architecture that calculates the dynamics of a hand, this is accomplished by computing the dynamics of each finger in a parallel manner. In this approach multiple threads (e.g. haptics thread, graphics thread, collision detection thread, etc.) run concurrently and...

متن کامل

Chrono: a Parallel Physics Library for Rigid-body, Flexible-body, and Fluid Dynamics

This contribution discusses a multi-physics simulation engine, called Chrono, that relies heavily on parallel computing. Chrono aims at simulating the dynamics of systems containing rigid bodies, flexible (compliant) bodies, and fluid-rigid body interaction. To this end, it relies on five modules: equation formulation (modeling), equation solution (simulation), collision detection support, doma...

متن کامل

Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. II. Applications to ellipses and ellipsoids

We apply the algorithm presented in the first part of this series of papers to systems of hard ellipses and ellipsoids. The theoretical machinery needed to treat such particles, including the overlap potentials, is developed in full detail. We describe an algorithm for predicting the time of collision for two moving ellipses or ellipsoids. We present performance results for our implementation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2012